3.293 \(\int \frac{x^2 (a+b \sinh ^{-1}(c x))^2}{\sqrt{d+c^2 d x^2}} \, dx\)

Optimal. Leaf size=204 \[ -\frac{\sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )^3}{6 b c^3 \sqrt{c^2 d x^2+d}}+\frac{x \sqrt{c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )^2}{2 c^2 d}-\frac{b x^2 \sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )}{2 c \sqrt{c^2 d x^2+d}}+\frac{b^2 x \left (c^2 x^2+1\right )}{4 c^2 \sqrt{c^2 d x^2+d}}-\frac{b^2 \sqrt{c^2 x^2+1} \sinh ^{-1}(c x)}{4 c^3 \sqrt{c^2 d x^2+d}} \]

[Out]

(b^2*x*(1 + c^2*x^2))/(4*c^2*Sqrt[d + c^2*d*x^2]) - (b^2*Sqrt[1 + c^2*x^2]*ArcSinh[c*x])/(4*c^3*Sqrt[d + c^2*d
*x^2]) - (b*x^2*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x]))/(2*c*Sqrt[d + c^2*d*x^2]) + (x*Sqrt[d + c^2*d*x^2]*(a
+ b*ArcSinh[c*x])^2)/(2*c^2*d) - (Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^3)/(6*b*c^3*Sqrt[d + c^2*d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.275487, antiderivative size = 204, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.214, Rules used = {5758, 5677, 5675, 5661, 321, 215} \[ -\frac{\sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )^3}{6 b c^3 \sqrt{c^2 d x^2+d}}+\frac{x \sqrt{c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )^2}{2 c^2 d}-\frac{b x^2 \sqrt{c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )}{2 c \sqrt{c^2 d x^2+d}}+\frac{b^2 x \left (c^2 x^2+1\right )}{4 c^2 \sqrt{c^2 d x^2+d}}-\frac{b^2 \sqrt{c^2 x^2+1} \sinh ^{-1}(c x)}{4 c^3 \sqrt{c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(a + b*ArcSinh[c*x])^2)/Sqrt[d + c^2*d*x^2],x]

[Out]

(b^2*x*(1 + c^2*x^2))/(4*c^2*Sqrt[d + c^2*d*x^2]) - (b^2*Sqrt[1 + c^2*x^2]*ArcSinh[c*x])/(4*c^3*Sqrt[d + c^2*d
*x^2]) - (b*x^2*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x]))/(2*c*Sqrt[d + c^2*d*x^2]) + (x*Sqrt[d + c^2*d*x^2]*(a
+ b*ArcSinh[c*x])^2)/(2*c^2*d) - (Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^3)/(6*b*c^3*Sqrt[d + c^2*d*x^2])

Rule 5758

Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[(f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*(a + b*ArcSinh[c*x])^n)/(e*m), x] + (-Dist[(f^2*(m - 1))/(c^2*m), Int[((f*x)
^(m - 2)*(a + b*ArcSinh[c*x])^n)/Sqrt[d + e*x^2], x], x] - Dist[(b*f*n*Sqrt[1 + c^2*x^2])/(c*m*Sqrt[d + e*x^2]
), Int[(f*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] &&
 GtQ[n, 0] && GtQ[m, 1] && IntegerQ[m]

Rule 5677

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + c^2*x^2]/S
qrt[d + e*x^2], Int[(a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e,
 c^2*d] &&  !GtQ[d, 0]

Rule 5675

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSinh[c*x]
)^(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && GtQ[d, 0] && NeQ[n, -1
]

Rule 5661

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcS
inh[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt
[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{x^2 \left (a+b \sinh ^{-1}(c x)\right )^2}{\sqrt{d+c^2 d x^2}} \, dx &=\frac{x \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{2 c^2 d}-\frac{\int \frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{\sqrt{d+c^2 d x^2}} \, dx}{2 c^2}-\frac{\left (b \sqrt{1+c^2 x^2}\right ) \int x \left (a+b \sinh ^{-1}(c x)\right ) \, dx}{c \sqrt{d+c^2 d x^2}}\\ &=-\frac{b x^2 \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )}{2 c \sqrt{d+c^2 d x^2}}+\frac{x \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{2 c^2 d}+\frac{\left (b^2 \sqrt{1+c^2 x^2}\right ) \int \frac{x^2}{\sqrt{1+c^2 x^2}} \, dx}{2 \sqrt{d+c^2 d x^2}}-\frac{\sqrt{1+c^2 x^2} \int \frac{\left (a+b \sinh ^{-1}(c x)\right )^2}{\sqrt{1+c^2 x^2}} \, dx}{2 c^2 \sqrt{d+c^2 d x^2}}\\ &=\frac{b^2 x \left (1+c^2 x^2\right )}{4 c^2 \sqrt{d+c^2 d x^2}}-\frac{b x^2 \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )}{2 c \sqrt{d+c^2 d x^2}}+\frac{x \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{2 c^2 d}-\frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^3}{6 b c^3 \sqrt{d+c^2 d x^2}}-\frac{\left (b^2 \sqrt{1+c^2 x^2}\right ) \int \frac{1}{\sqrt{1+c^2 x^2}} \, dx}{4 c^2 \sqrt{d+c^2 d x^2}}\\ &=\frac{b^2 x \left (1+c^2 x^2\right )}{4 c^2 \sqrt{d+c^2 d x^2}}-\frac{b^2 \sqrt{1+c^2 x^2} \sinh ^{-1}(c x)}{4 c^3 \sqrt{d+c^2 d x^2}}-\frac{b x^2 \sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )}{2 c \sqrt{d+c^2 d x^2}}+\frac{x \sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{2 c^2 d}-\frac{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^3}{6 b c^3 \sqrt{d+c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.880818, size = 198, normalized size = 0.97 \[ \frac{12 a^2 c x \left (c^2 d x^2+d\right )-12 a^2 \sqrt{d} \sqrt{c^2 d x^2+d} \log \left (\sqrt{d} \sqrt{c^2 d x^2+d}+c d x\right )-6 a b d \sqrt{c^2 x^2+1} \left (2 \sinh ^{-1}(c x) \left (\sinh ^{-1}(c x)-\sinh \left (2 \sinh ^{-1}(c x)\right )\right )+\cosh \left (2 \sinh ^{-1}(c x)\right )\right )-b^2 d \sqrt{c^2 x^2+1} \left (4 \sinh ^{-1}(c x)^3-3 \left (2 \sinh ^{-1}(c x)^2+1\right ) \sinh \left (2 \sinh ^{-1}(c x)\right )+6 \sinh ^{-1}(c x) \cosh \left (2 \sinh ^{-1}(c x)\right )\right )}{24 c^3 d \sqrt{c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(a + b*ArcSinh[c*x])^2)/Sqrt[d + c^2*d*x^2],x]

[Out]

(12*a^2*c*x*(d + c^2*d*x^2) - 12*a^2*Sqrt[d]*Sqrt[d + c^2*d*x^2]*Log[c*d*x + Sqrt[d]*Sqrt[d + c^2*d*x^2]] - 6*
a*b*d*Sqrt[1 + c^2*x^2]*(Cosh[2*ArcSinh[c*x]] + 2*ArcSinh[c*x]*(ArcSinh[c*x] - Sinh[2*ArcSinh[c*x]])) - b^2*d*
Sqrt[1 + c^2*x^2]*(4*ArcSinh[c*x]^3 + 6*ArcSinh[c*x]*Cosh[2*ArcSinh[c*x]] - 3*(1 + 2*ArcSinh[c*x]^2)*Sinh[2*Ar
cSinh[c*x]]))/(24*c^3*d*Sqrt[d + c^2*d*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.262, size = 530, normalized size = 2.6 \begin{align*}{\frac{{a}^{2}x}{2\,{c}^{2}d}\sqrt{{c}^{2}d{x}^{2}+d}}-{\frac{{a}^{2}}{2\,{c}^{2}}\ln \left ({{c}^{2}dx{\frac{1}{\sqrt{{c}^{2}d}}}}+\sqrt{{c}^{2}d{x}^{2}+d} \right ){\frac{1}{\sqrt{{c}^{2}d}}}}+{\frac{{b}^{2}{x}^{3}}{4\,d \left ({c}^{2}{x}^{2}+1 \right ) }\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }}+{\frac{{b}^{2}x}{4\,{c}^{2}d \left ({c}^{2}{x}^{2}+1 \right ) }\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }}-{\frac{{b}^{2} \left ({\it Arcsinh} \left ( cx \right ) \right ) ^{3}}{6\,d{c}^{3}}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}+{\frac{{b}^{2} \left ({\it Arcsinh} \left ( cx \right ) \right ) ^{2}{x}^{3}}{2\,d \left ({c}^{2}{x}^{2}+1 \right ) }\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }}+{\frac{{b}^{2} \left ({\it Arcsinh} \left ( cx \right ) \right ) ^{2}x}{2\,{c}^{2}d \left ({c}^{2}{x}^{2}+1 \right ) }\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }}-{\frac{{b}^{2}{\it Arcsinh} \left ( cx \right ) }{4\,d{c}^{3}}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}-{\frac{{b}^{2}{\it Arcsinh} \left ( cx \right ){x}^{2}}{2\,cd}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}-{\frac{ab \left ({\it Arcsinh} \left ( cx \right ) \right ) ^{2}}{2\,d{c}^{3}}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}+{\frac{ab{\it Arcsinh} \left ( cx \right ){x}^{3}}{d \left ({c}^{2}{x}^{2}+1 \right ) }\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }}-{\frac{ab{x}^{2}}{2\,cd}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}}+{\frac{ab{\it Arcsinh} \left ( cx \right ) x}{{c}^{2}d \left ({c}^{2}{x}^{2}+1 \right ) }\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }}-{\frac{ab}{4\,d{c}^{3}}\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) }{\frac{1}{\sqrt{{c}^{2}{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*arcsinh(c*x))^2/(c^2*d*x^2+d)^(1/2),x)

[Out]

1/2*a^2*x/c^2/d*(c^2*d*x^2+d)^(1/2)-1/2*a^2/c^2*ln(x*c^2*d/(c^2*d)^(1/2)+(c^2*d*x^2+d)^(1/2))/(c^2*d)^(1/2)+1/
4*b^2*(d*(c^2*x^2+1))^(1/2)/d/(c^2*x^2+1)*x^3+1/4*b^2*(d*(c^2*x^2+1))^(1/2)/c^2/d/(c^2*x^2+1)*x-1/6*b^2*(d*(c^
2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/c^3/d*arcsinh(c*x)^3+1/2*b^2*(d*(c^2*x^2+1))^(1/2)/d/(c^2*x^2+1)*arcsinh(c*x
)^2*x^3+1/2*b^2*(d*(c^2*x^2+1))^(1/2)/c^2/d/(c^2*x^2+1)*arcsinh(c*x)^2*x-1/4*b^2*(d*(c^2*x^2+1))^(1/2)/c^3/d/(
c^2*x^2+1)^(1/2)*arcsinh(c*x)-1/2*b^2*(d*(c^2*x^2+1))^(1/2)/c/d/(c^2*x^2+1)^(1/2)*arcsinh(c*x)*x^2-1/2*a*b*(d*
(c^2*x^2+1))^(1/2)/(c^2*x^2+1)^(1/2)/c^3/d*arcsinh(c*x)^2+a*b*(d*(c^2*x^2+1))^(1/2)/d/(c^2*x^2+1)*arcsinh(c*x)
*x^3-1/2*a*b*(d*(c^2*x^2+1))^(1/2)/c/d/(c^2*x^2+1)^(1/2)*x^2+a*b*(d*(c^2*x^2+1))^(1/2)/c^2/d/(c^2*x^2+1)*arcsi
nh(c*x)*x-1/4*a*b*(d*(c^2*x^2+1))^(1/2)/c^3/d/(c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsinh(c*x))^2/(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b^{2} x^{2} \operatorname{arsinh}\left (c x\right )^{2} + 2 \, a b x^{2} \operatorname{arsinh}\left (c x\right ) + a^{2} x^{2}}{\sqrt{c^{2} d x^{2} + d}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsinh(c*x))^2/(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral((b^2*x^2*arcsinh(c*x)^2 + 2*a*b*x^2*arcsinh(c*x) + a^2*x^2)/sqrt(c^2*d*x^2 + d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \left (a + b \operatorname{asinh}{\left (c x \right )}\right )^{2}}{\sqrt{d \left (c^{2} x^{2} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*asinh(c*x))**2/(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x**2*(a + b*asinh(c*x))**2/sqrt(d*(c**2*x**2 + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}^{2} x^{2}}{\sqrt{c^{2} d x^{2} + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsinh(c*x))^2/(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)^2*x^2/sqrt(c^2*d*x^2 + d), x)